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\ Abstract

N
This dissertation presents the theoretical development

and numerical implementation of a minimum cross-entropy tar-
get detection algorithm. The procedure is based on the so-
lution of a nonlinear constrained cross-entropy minimization
problem and requires information in the form of raw image
moments. The detection rule involves both preprocessing and
real-time computations. The preprocessing requires the se-
lection of a set of target templates and the solution of the
constrained cross-entropy minimization problem for the se-
lected target templates. The real-time processing requires
the computation of image moments and a set of dot product
operations.

An orthonormal set of "information functions” is devel-
oped and numerical methods of converting raw image moments
into the expected values of the information functions are
given. Numerical techniques for image moment computation
and a solution scheme for the nonlinear set of constraints
are developed and implemented. —The theoretical development
of the detection algorithm is given é;arting from a set of
consistency axioms. The expected per%grmance is analyzed
and factors determining performance prgéen%edTE>The procedure
is applied to a test set of 100 images and the detection al-
gorithm error probability is projected and related to the

salient performance determining factors.
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INFORMATION THEQRETIC DETECTION OF OBJECTS
EMBEDDED IN CLUTTERED AERIAL SCENES

Chapter I. Introduction

The general problem considered in this dissertation is
that of characterizing and evaluating the information present
in the image plane of an optical system. The specific prob-
lem of interest is the detection of complex man-made objects
in aerial scenes that contair confusing background informa-
tion or optical clutter. A general overview of this target
detection in clutter problem can be found in Gagnon's disser-
tation (Gagnor, 1975) while Harley et al (Harley, 1977) pro-
vide an overview of typical system parameters encountered in
practice.

The image plane which is the source of information for
this detection problem is usually a photograph which can be
taken from any airborne vehicle. The source of information
or aerial photographs are classified as either vertical or
oblique aerial photographs depending on the angle of inclina-
tion of the optical axis of the lens. Vertical photographs
are those taken with the optical axis of the lens pointing
vertically downward at the time of exposure. Oblique photo-
graphs are those taken with the optical axis intentionally
deviated from the vertical. Oblique photographs are further
classified as low and high obliqﬁe based on the magnitude of




the a 'le of deviation. A low oblique has a relatively

small or low angle of deviation from vertical and does not
include the apparent horizor »nr the visible junction of

earth and sky as seen from the camera station. A high o-
blique has a relatively large or high angle of deviation

from the vertical and includes the apparent horizon (Whitmore,
1966: 1). This dissertation will only characterize vertical
photographs taken from a known altitude, however, the methods
used in this work should also characterize at least low o-
blique photographs.

Figure 1.1 shows some of the geometry involved in gener-
ating a vertical aerial photograph. Each camera exposure pro-
duces a frame of information that is shown as a series of
large non-overlapping squares in the figure for simplicity.
The frames are also shown partitioned into K? *information
cells” that form the basic decision elements for the detec-
tion algorithm. The objects to be located belong to one of
a set of known classes and all elements in a given class are
essentially identical. The class of objects of current in-
terest is called the target and a target can appear at any
location and orientation within a frame.

With this problem formulation the only information avail-
able for target detection is the image plane irradiance dis-
tribution function I(x,y) that is the image of the clut-
tered ground scene. Formation of this image I(x,y) from

an object scene F(§,7) actually represents a flow of in-
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Fig. 1.1 Generation of a Vertical Aerial Scene
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format_on from the object plane to the image plane. The
carriers of information are the photons. In traveling from
the object plane to the imag - plane, a photon encounters
intervening physical processes such as lenses and the atmos-
phere. The sum of these processes forms an information chan-
nel. In its most basic sense, the irradiance distribution
function is no more than a superposition of photon events.
These events are photon arrivals (units of irradiance) for
the image or photon departures (units of radiance) from the
object. The sum or density of the photon events as a func-
tion of position in the image plane defines the irradiance
distribution function (Frieden, 1979). It is this irradiance
distribution function I(x,y) or photon density that repre-
sents the information channel output and that must be char-
acterized and used in the detection algorithm.

Looking at the image more mathematically, let C(x,y,t,A)
represent the spatial energy distribution of an image source
of radiant energy at spatial coordinates (x,y) at time ¢t
and a wavelength A . Because light intensity is a real
positive quantity, that is because intensity is proportional
to the modulus squared of the electric field, the image light
function is real and non-negative. Furthermore, in all prac-
tical imaging systems there is always a small amount of back-
ground light present. Because of this background light and
the physical restrictions imposed by the imaging system, it

is assumed that




0 < Cc(x,y,t,A) sA

where A is the maximum brightness. An image is also nec-
essarily limited in extent by the imaging system and the re-
cording media. For mathematical simplicity all images in
this dissertation are assumed to be nonzero only over a

square region for which
-L = x,ysL

Since the image is also observable only for a finite time,
(-T<t<T) +the image light function C(x,y,t,A) is a bounded
four-dimensional function with bounded independent variables.
As a final restriction, it is assumed that the image light
function is continuous over its domain of definition (Pratt,
1978: 4). The image light function C(x,y,t,A) is actually
at worst piece-wise continuous and is well approximated by
a continuous function.

The brightness response to the image light function
c(x,y,t,A\) can now be defined for both men and machines.
In men the brightness response of a standard human observer
is commonly used to define the instantaneous luminance of the

light field as shown by

Y(x'y!t) ‘-‘/:(x-y.t.)\)v. (A)d)\
(]
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where 7, (A) represents the relative luminous efficiency
function or the spectral response of human vision. Similarly,
the color response of a standard human observer is measured
and used in terms of some set of tristimulus values that are
linearly proportional to the amounts of red, green, and blue
light needed to "match” a colored light. In a machine with

a multispectral imaging system the observed image field is
modeled as a spectrally weighted integral of the image light
function. The ith spectral image field is then given by

F, (x,y,t) =/:(x.y.t.us, (A)dA
1]

where S, (A) is the spectral response of the ith sensor (Hall,

C., 1978: 17). For a monochrome imaging system, as will be
used in this dissertation, the image function F(x,y,t) nom-
inally denotes the image luminance or some converted or cor-
rupted physical representation of luminance.

The image function F(x,y,t) is propagated through the
information channel or transformed from the object scene
plane to the image plane of the aircraft to form the instan-
taneous irradiance distribution. The channel transformation

can be viewed as a one-to-one mapping and is defined by

I(x,y,t) = T{F(x.y.t)}

When the transformation is also assumed to be an additive
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linear operator the standard superposition integral descrip-
tion of the channel output is obtained. Using the sifting

property of delta functions the mapping is first rewritten as

Qo Co
I(X.Y.t) = Tu‘!‘F(épnvt) J(X-E.y-ﬂ)dfdﬂ}

Now changing the order of the general linear operator T

and the integral operator results in the expression

I(x,y,t) = 7]F(€.n.-t) T{o(x-e.y-n)}dédﬂ

Then defining the channel point spread function as H(x,y;é.,n)
='P{?(x-€.y—nf} gives the desired integral expression for
the channel output I(x,y,t). The superposition integral
description of the channel output or irradiance distribution

is given by

[- -]
I(x,y,t) = //m.n.t) H(x,y: é,7)dédn

In the object detection problem of interest in this work, the
image does not change with time and the time variable can be
dropped from the instantaneous irradiance distribution to

let I(x,y) represent the spatial distribution of 1light in
the image plane or the light density function.

Now the normalized irradiance distribution can be defined

by
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LL
i(x,y) = 1(x,y)/ fI(x.y)dxdy
O

The normalized distribution function has all the properties

of a bivariate probability density function since

LL
f/i(x.y)dxdy =1
-U-C

and the probability of a photon arriving in any region R of

the image is given by the expression

& P(R) = /fi(x.y)dx&y
/

o Several other authors have used this probability density view-

point in their work in image processing. Among these are
Frieden, working with image restoration techniques (Frieden,
1972) and Minerbo, in reconstructing a source from a discrete
set of projection data (Minerbo, 1979). Using this viewpoint
it is this bivariate probability density function that must

be characterized and used in the detection algorithm.
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Chapter II. Maximum Entropy and

Minimum Cross-Entropy

The principles of maximum entropy and minimum cross-
entropy provide a means of approximating the normalized irra-
diance distribution i(x,y) and detecting targets of inter-
est in a cluttered aerial scene. The approach taken in devel-
oping a detection rule for the cluttered scene problem of
this dissertation is based on entropy and cross-entropy hav-
ing unique properties as information measures (Johnson, 1979)
and on cross-entropy minimization having unique properties
as an inference procedure (Shore, 1980). The work is an
extension of Miller's work (Miller, 1980) in approximating
one-dimensional probability density functions using a maximum
entropy criterion and much of the background material is re-

viewed in his dissertation.

?E Background

?f The principles of entropy maximization and cross-entropy
fﬁ minimization both have their roots in Shannon’'s work in com-

: munication theory. For discrete, noiseless systems, maximiz-
g ing the source entropy results in the best source encoding

i’ in the sense of enabling the highest information rate over a

: fixed capacity channel (Shannon, 1948a). For continuous sys-
Lj tems, Shannon'’s definition of source rate for a fixed fidel-

E: ity criterion or rate-distortion function involved the mini-

g 9
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mization of a functional (mutual information) like cross-
entropy (Shannon, 1948b). However, it was Edwin Jaynes who
first proposed the principle of maximum entropy as a means

of approximating an unknown probability density function more

than twenty-five years ago (Jaynes, 1957). While the name
cross-entropy is due to Good (Good, 1963), the principle of
minimum cross-entropy is a generalization of the maximum en-

tropy principle that was first proposed by Kullback, who

i’"vt T

called it a principle of minimum directed divergence or min-
imum discrimination information (XKullback, 1959:37). Jaynes'

€§i work has been applied in a number of areas, but within the

" ,-:27. T
i

engineering community the most widely known application is
Burg's Maximum Entropy Spectral Analysis (MESA) technique
@i (Burg, 1967). However, the maximum entropy principle is ap-
plied indirectly in terms of filtering, rather than directly

in terms of approximating the underlying probability densities

and it is not widely understood that MESA is identical to

Jaynes' principle (Shore, 1981). Despite their many proven
applications, Jaynes' principle of maximum entropy and Kull-
back’s principle of minimum cross-entropy have had a contro-
versial history due to their rather intuitive justification

based on entropy's properties as an information measure.

Recently, however, Shore and Johnson have demonstrated (Shore,
1980) that these principles are correct general methods of
inference when given information in terms of expected values.

Their results rest on four consistency axioms which are used

10
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to dem-nstrate maximizing any other function, but entropy
will lead to logical inconsistencies unless that function and

entropy have identical maxima.

Definitions and General Problem Statement

Given the historical outline, this section will describe
the general setting where the maximum entropy and minimum
cross-entropy principles can be applied and define the nota-
tion that will be used throughout the dissertation. The main
interest in this work is approximating continuous bivarate
density functions and making logical inferences based on this
approximation. Because the cluttered aerial scene problem
is driving this review, all n-dimensional results will only
be presented for bivariate density functions.

The theory for approximating discrete probability den-
sity functions using the principle of maximum entropy is well-
known and has found a great many applications. In this prob-
lem formulation, the underlying system has n possible
states x; and they occur with unknown probabilities q(xl).
The system is observed with the observations taking the form

%:q(xl)f;(x') =m_ or as the expected value of a set of
"information functions” {fk}. The problem then is to choose
a distribution e(x;) that is in some sense the best esti-
mate of q(xl) given the expected value measurements. In
general, there remains an infinite set of distributions that
are not ruled out by the expected value measurements that

now serve as constraints on any approximating distribution.

i1
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The ma2avimum entropy principle, however, provides a unique
approximation density e(x‘) by selecting from the infinite
set of densities that satisfy the constraints the one density
with the largest entropy defined as -}; e(xi)log[e(xi)].

The principle of minimum cross-entropy is a generaliza-
tion of the maximum entropy principle that applies in cases
when a prior distribution p(x;) that estimates q(x;) is
known in addition to the measurement constraints. The prin-
ciple states that: of the infinite set of distributions
e(x') that satisfy the constraints, choose the one with the
least cross-entropy §;e(x‘)log[;(x')/p(x')J. The connection
between the two principles occurs when the prior is a uniform
density and in this case minimizing cross-entropy is equiva-
lent to maximizing entropy. The concept of cross-entropy
also generalizes correctly for continuous probability densi-
ties unlike the concept of maximum entropy, where only a
differential entropy is defined in the continuous case and
that is not even invariant under coordinate transformations
(McEliece, 1977:38).

In the case of continuous bivariate probability densities
the principle of minimum cross-entropy provides a general
method of inference about an unknown density q(x,y) when
there exists a prior estimate of q(x,y) and new information
about the unknown density in the form of expected values of
the information functions. The principle states that: of all

the densities that satisfy the expected value constraints,

12
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choose as the approximating density the posterior e(x,y)

with the least cross-entropy

,p) = _ e(x,y)
H(e,p) /[e(x y)log[m] dxdy

where p(x,y) is a prior estimate of gq(x,y). Jaynes has

o >~ s
-

also shown (Jaynes, 1968) that generalizing entropy maximiza-
tion to continuous densities leads to the above cross-entropy
functional with p(x,y) being called an "invariant measure”

instead of a prior density. When using the entropy maximiza-

fgi tion principle, there is an implicit assumption of uniform
priors when viewed from the broader cross-entropy perspective.
The failure of maximum entropy to generalize as might be ex-
pected is also explained by this viewpoint since a uniform
prior in one coordinate system may not be uniform in another

coordinate system (Shore, 1980).

The Consistency Axioms

Shore and Johnson (Shore, 1980) have proven that given

#; a prior density and new information in the form of constraints
' on expected values, there is only one posterior density satis-
fying these constraints that can also be chosen in a manner

; that satisfies a set of logical consistency axioms. In addi-
tion, this unique posterior density can be obtained by mini-
mizing the cross-entropy functional. The four consistency

axioms are informally defined as follows:

13
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1. Uniqueness: The result should be unique.

2. Invariance: New information can be accounted for
in any coordinate system.

3. System Independence: Independent information about
independent sysiems can be accounted for separately
in terms of different densities or together in terms
of a joint density.

4, Subset Independence: Information about an independ-
ent subset of system states can be accounted for in
terms of a separate conditional density or it terms

of the full system density.

All four of these axioms are based on a single fundamen-
tal principle: If a problem can be solved in more than one
way, the results should be consistent (Shore, 1980). The
axioms are the desired properties of an inference procedure
rather than the desired properties of an information measure.
Using only a general functional J(e,p) to select the poste-
rior density e(x,y) in the inference procedure and starting
with the axioms of subset independence and invariance, Shore
and Johnson were able to show that the first consequence of
their axioms was to restrict J(e,p) to functionals that are

equivalent to the form

Je,p) = fff[e(x.y).p(x.y)]dxdy
D

14
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for sc .e function f of two variables. This functional form
is called the "sum form"” and in work previous to Shore and
Johnson's development, the sum form was assumed rather than
derived (Johnson, 1979). Then having established this func-
tional form and using the general axiom of invariance, they
show that J 1is further restricted to functionals that are

equivalent to the form

,p) = . e(x,y)
J(e,p) /Ze(x y) h[m] dxdy

where h 1is some function of a single variable. Using all
four axions, Shore and Johnson are finally able to show that

J must be equivalent to the functional

J(e,p) = //e(x y)log[e(x Y)] dxdy
p(x,y).

or J(e,p) must be equivalent to cross-entropy. Since it

is possible that no functional satisfies the consistency
axioms, their final step is to show that the cross-entropy
functional H(e,p) satisfies all four axioms. The Shore

and Johnson result has immediate application to approximating
the normalized irradiance distribution i(x,y) since it pro-
vides a logically consistent method of approximating the
light density based on measurements in the form of expected
values. The procedure to follow then requires a prior esti-

mate of the light density, expected value information about

15
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the tr.e density 1i(x,y) and the functional H(e,p) to
measure how much the prior density differs from the posterior
density. The principle of minimum cross-entropy is then the
correct method of incorporating all the given information

and producing a logically consistent posterior density e(x,y)

that approximates the unknown true light density i(x,y).

Properties of Cross-Entropy Minimization

;‘ The basic properties of cross-entropy minimization are
fundamental to the problem of detecting objects in a cluttered
o aerial scene using the posterior density e(x,y) as an opti-
T? t ’ mum light density approximation. Because of their importance

ﬁ in developing a target detection algorithm and for complete-

ness, I will outline the well-known properties of cross-
entropy minimization and the notational system developed by
Johnson and Shore (Johnson, 1980). Many results dealing with
cross-entropy minimization can be efficiently stated in terms

of an abstract information operator * which takes the two

F known arguments of a prior density and new expected value

information to yield a posterior density. Using this opera-

{ tor notation, the posterior e 1is given by e = p*I where

I stands for the known constraints on the expected values.
h The problem will be stated more formally in this section
¢ to allow concise definitions of minimum cross-entropy proper-
é - ties. Again in this outline, because of the thrust in this
h dissertation of approximating a bivariate density function,

all results will be presented only for the two-dimensional

16
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case. The formal problem statement defines a point (x,y)

in the x-y plane as a system state with D the region in the
plane where all states are defined. Then S is the set of
all probability densities S(x,y) on D such that

S(x,y) = 0 for (x,y) €é D and

ffs(x,y)dxdy =1
D

New information takes the form of linear equality constraints

or

/fq(x,y)fk(x,y)dxdy = m,
[

where q(x,y) is the unknown true system density with
a(x,y) € S and £ (x,y) are known information functions
with known expected values. The probability densities that
satisfy these constraints always comprise a convex subset

Z of S (Johnson, 1979). The set 2 is then termed a
constraint set and in general, a given convex region Z of
S may be defined by more than one set of information func-
tions. The fact that the constraints form a convex subset
of S 1insures the convergence of computational methods at-
tempting to find the minimum cross-entropy posterior density.
The expected value constraints and the resulting convex set
Z form the term I wused in the abstract operator notation.

The second argument for the information operator * is

17
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a prins~ density p(x,y). The density p(x,y) contained in

S 1is used to define an estimate of q(x,y) which can be
obtained by any means prior to learning the average value
information I. The prior density is required to be strictly

positive over D:

p[(x,y) € D] >0

In making this restriction, it is assumed that D 1is the set
of states that is possible according to the prior informa-
tion. The restriction does not significantly restrict results,
but does avoid the technical problems that would result from
division by p(x,y) equal to zero. In a more general setting,
D would be a measurable space and p and e would be re-
placed by prior and posterior probability measures. By defin-
ing probability densities, it is implicitly assumed there is
some underlying measure with respect to which the other meas-
ures are absolutely continuous (Kullback, 1959:4). Such a
measure will exist when no event with zero prior probability
can have a positive posterior probability and which is demand-
ed by the strictly positive assumption for p(x,y) (Guiasu,
1977).

Given the two arguments for the information operator #
(the prior p(x,y) and new information 1I), the posterior
density e(x,y) € Z that results from taking I into account

is selected by minimizing the cross-entropy H(s,p) in the

18
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constr_int set Z:

. min
H(e,p) - S zH(s,p)
Using this problem statement and the cross-entropy minimiza-
tion procedure, the following properties apply to cross-

entropy minimization:

Property 1: (Uniqueness) The posterior e = p*I is
unique.

The uniqueness property insures that the solution of a
given cross-entropy minimization problem for the posterior
density e(x,y) is unique. The minimization of the func-

tional H(e,p) allows this unique density to be identified.

Property 2: (Prior Omnipotence) The posterior satisfies
e = p*¥I = p if and only if the prior satisfies p € Z.

The prior omnipotence property shows that when the new
information I agrees with the assumed prior density the
prior and posterior are equal. When cross-entropy minimiza-
tion is viewed as an inference procedure, it makes sense that
the posterior density e(x,y) should be unchanged from the
prior, if the new information does not contradict the prior

density p(x,y) in any way.

Property 3: (Idempotence) (p*I)*I = p*I

19




I-2mpotence insures that taking the same information
i‘ into account twice has the same effect as taking it into ac-

count once.

Property 4: (Information Intersection) Let I  be the
information I, = (q€ 2,) where this notation denotes that
qQ 1is a member of the constraint set 2, € S created by the
constraints I, and I, the information I, = (q € Zz)' for
overlapping constraint sets Z‘, Z, € S. If (p*I‘) € Z2

holds, then

P*Ij = (P*Ix)*(ItnIz) = (p*Iz)*Iz = p*(I{llz)

holds.

The information intersection property is similar to the
prior omnipotence property. The result shows that when I,
is taken into account, if the resulting posterior density
p*I, already satisfies the constraints imposed by the addi-
tional information I,, then taking I, into account in

various ways has no effect on the posterior density.

Property 5: (Invariance) Let T be a coordinate trans-
‘ formation from (x,y) €é D to (u,v)€R with (Te)(u,v) =
J! e(x,y), where J 1is the Jacobian J = 3d(u,v)/a(x,y).
Let TS be the set of densities Te corresponding to densi-

( ties e € S. Let (TZ) ¢ (TS) correspond to 2 ¢ S. Then

P
b
x 20
b




(Tp)*(TI)

T(p*I)

and

H[T(p*1),Tp| = H(p*I.p)

hold, where
T = [(Tq) € (Tz)]

or Tq 1is a member of the constraint set TZ ¢ TS created
by the constraints TI.

The invariance property states that the same answer is
obtained when an inference problem is solved in two different
coordinate systems, in that the posterior densities in the
two systems are related by the coordinate transformation.
Also, the cross-entropy between the posteriors and the priors

has the same value in both coordinate systems.

Property 6: (System Independence) Let there be two
systems, with sets D, and D, of states and probability
densities of states e € S, and e, € S,. Let p € S,
and p, € S, Dbe prior densities. With I, = (ql € Zt) and
I, = (q; € 2,) new information about the two systems, where

Z‘ S S‘ and Z2 s Sz' Then

(p, P )% (I, n I,) = (p,*I,)(py*I,)

21
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H(e, e, ,p, P,) = H(e,,p,) + H(e,,p,)

hold where e, = p,*I;, and e, = p,*I,.

The system independence property shows that it does not
matter whether independent information about two systems is
accounted for separately or together in terms of a joint
density. Whether or not the two systems are in fact independ-
ent is irrelevant since the property applies as long as there

are independent priors and independent new information.
Property 7: (Triangle Relations) For any r(x,y) € Z
H(r,p) = H(r,e) + H(e,p)
where e = p*I. When I 1is determined by a finite set of
equality constraints only, equality holds.

The triangle equality is important for all applications
in which cross-entropy minimization is used for purposes of
clagssification on pattern recognition.

Property 8: (Posterior Convergence) The relationship

H(q'p*I) s H(Q'P)

holds with equality, if and only if p*I = p.

22
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T' e posterior convergence property states that the pos-
terior density e(x,y) 1is always closer to the scene density
q(x,y) in the cross-entropy sense than is the prior density

p(x-Y) .

Property 9: (Piecemeal Information) Let the system
have a probability density q € S, and let there be informa-
tion I, = (q € 2;) and I, = (q € 2,), where Z;, 2,€S
are constraint sets with non-empty intersection. Given that

z

, 1s determined by a set of equality constraints only, then

(p*L,)*(1, n I,) = p*(I, n I,)

and

H(e,p) = H(e,e,) + H(e,,p)

hold where e = p*(I, n I,) and e = p*I,.

The piecemeal information property is also important
because of its application in classification and pattern re-
cognition. In general, this result is important in any ap-
plication where the constraint information arrives piecemeal
and states that intermediate posterior densities can be used
as priors in computing final posterior densities without af-
fecting the results.

There are additional cross-entropy minimization proper-
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ties o general interest not covered in this listing. The
additional properties will be developed and discussed in the
next chapter. Chapter III will develop a minimum cross-
entropy posterior density approximation and a target detec-
tion algorithm based on the approximation and properties of

minimum cross-entropy densities.
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Chapter III. Detection Algorithm Development

Introduction

The theoretical development of an algorithm for detect-
ing complex man-made objects in cluttered aerial scenes will
be presented in this chapter. The introduction to this dis-
sertation outlined the general framework for the object de-
tection problem and showed how scene frames are partitioned
in K? information cells. The detection algorithm developed
in this chapter is then sequentially applied to each informa-
tion cell in a frame resulting in all cells being classified
as containing targets or only clutter. To develop the de-
tection algorithm, the irradiance distribution function for
the ith cell, in the jth frame will be denoted Q,l(x,y).

The normalized irradiance distribution function is denoted
q,l(x,y) and has all the properties of a bivariate probabil-
ity density function. Following the notation of previous
chapters, e (x,y) is the minimum cross-entropy approxima-
tion to the ith cell and jth frame normalized irradiance
distribution function gq; (x,y). The computation of the
approximation e.l(x.y) requires a prior ith cell and jth
frame density pll(x,y) and new expected value information
I;; - Throughout the remaining sections of this dissertation
it is assumed we are working with the ith information cell,

in the jth frame of an aerial scene and the explicit reference

25
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to the cell and frame number will be dropped unless it is

required for clarity.

Solution of the Constraint Equations

To classify cell density functions Q, (x,y) as contain-
ing targets or only clutter will require an explicit proce-
dure for obtaining the minimum cross-entropy density e, (x,y)
based on a set of information function expected value rela-
tions. The information functions fk(x,y) used in the mini-
ﬁum cross-entropy inference procedure are critical components

of the detection algorithm and will be explored fully in the

next chapter. The expression for the minimum cross-entropy
! posterior density can be found given that the number and
forms of the information functions are specified and their

: expected values have been computed over the information cell
; or symbolically, given f, (x,y) and mg k = 0,1,2...t are
| known. The minimum cross-entropy posterior approximation of
* | q(x,y) will then be the continuous density e(x,y) defined
- on the region -C < x,y < C that has a prior representation

p(x,y) and will satisfy the new expected value information

&
- BN

I. The mathematical statement of the problem is to find

AN

e(x,y) subject to the constraints:

A4S AR A

min{H(e.p)} = max<- /j/:(x,y)ln[%&_:%}] dxdy

¢ -C

subject to

vy
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¢ ¢
e(x,y)dxdy =1

-C ¢

and

f/f“(x'y) e(x,y)dxdy =

"¢ ¢ k=1,2...t

The information functions f,(x,y), k = 1,2...t are contin-
uous and bounded on the region -C s x,y < C. The problem

stated above is a constrained minimum problem and can be

solved using the Lagrange method of undetermined coeffieients.

The lLagrangian, L[e(x,y),&] is then formed as follows
(Luenberger, 1969:213):

LFHJL@=-M&@‘%O e(x,y)dxdy - 1

o @

t € C
.ZA‘ /ff, (x,y)e(x,y)dxdy - m,
1

Using the expression for cross-entropy, the Lagrangian can

be expressed as:

e(x,y)

t
L[e(x,y) A /fe(x y) 1n[P(x y)] - Ao - Z)\,f,(x.y) dxdy
lal

The Lagrangian can also be written in the form:

27

—



L ama aae

T

PR

S T— —— " p— " ’ Ly

L[e(x,,,‘) A /f X,Yy) ln[p(}’: 5) exp[ -Xo- Z)\f (x, _\,)” dxdy

j=1

Now using the fact that for 2 > 0 the natural logarithm is

bounded by

in(z) < 2 -1 if Z #£1
and

In(z) =2 -1 if 2 =1

provides a method of bounding the Lagrangian. Using this

property of natural logarithms provides the relationship:

[e(x.y).A //-e(x y) p(x y) exp[ —i‘)\‘f' (x,y)]-- 1>dxdy
l-
ZA m,

j=1

The goal of this procedure is to maximize the Lagrangian

L[e(x,y).A] and therefore e(x,y) must be selected to pro-

vide equality in the last expression. Again, using the pro-

perty of natural logarithms equality occurs, if and only if

t
e(x,y) = p(x,y)exp [— Ao = DN, (x.y)]
j=1
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the point where Z = 1. The preceding result is well-known
(Johnson, 1980:27), however, the derivation given here is
unique to this dissertation. The derivation of the minimum

cross-entropy density seen here is an extension of Miller's

work in maximum entropy and univariate densities (Miller,

1980:29).

The expression above for e(x,y) provides the required
form of the minimum cross-entropy density that approximates
the unknown true density q(x,y). Given a specific set of
expected values (mlk = 0,1...t), we solve the t + 1 con-
straint equations for A = (Ao,kl...ktf to then completely
determine e(x,y). The method of solving the given set of
nonlinear constraint equations for the lambda vector will be
presented in Chapter V.

From property one of Chapter II, we know the minimum
cross-entropy posterior density e(x,y) is unique. In terms
of the abstract information operator * a solution to the
cross-entropy minimization problem, if one exists, is unique
provided only that H(e,p) is not identically infinite as
e(x,y) ranges over the constraint set Z. A condition that
guarantees the existence of a solution is that in addition to
containing a density e(x,y) with finite cross-entropy, the
constraint set Z 1is closed (Johnson, 1980:5). For 2Z to
be closed, it suffices in turn that the constraint functions
fk(x.y) are bounded. Conversely, given values of

T . k] -
A= (AgA ... Ay) such that all constraints are satisfied,
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then t*e solution exists and is given by the above minimum
cross-entropy expression for e{(x,y). Conditions for the
general existence of solutions to the constrained minimiza-
tion problem are also discussed by Csiszar (Csiszar, 1975).
For this work with normalized irradiance distributions using
a finite set of bounded information functions fk(x,y) and
only equality constraints, the solution to the constrained
minimization problem will always exist and have the unique
form for e(x,y) derived in this section as the minimum

cross-entropy density.

Solution Characteristics

In general cross-entropy H(e,p) measures how much
e(x,y) differs from the prior p(x,y). The cross-entropy
at the minimum can be expressed in terms of the Lagrange
multipliers and the expected values of the information func-
tions. Starting with the expression for the minimum cross-

entropy density or

e(x,y) = p(x.y)exp[-ko- l:A,fl(x.y)]

and rearranging gives the expression

t
1n[le)(:;:§)] - [-Ao-;/\lf,(x.y)]

Now multiplying by e(x,y) and integrating over the informa-

tion cell givés the expression

30




/ﬁ(x,y)ln[%&_:%}] dxdy = - AJ/e(x.y)dxdy

t .
- ZAI//;‘i (x,y)e(x,y)dxdy

i=t

Therefore, the cross-entropy H(e,p) at the minimum point

is given by

t

H(e,p) = -, -:E;A,m,
l-

Kullback has also shown that cross-entropy in general

satisfies the relationship
H(e,p) = ©

and with equality only if p(x,y) = e(x,y) almost everywhere
(Kullback, 1959). Informally, H(e,p) 1is a measure of the
information divergence between the density function e(x,y)
and a prior density function p(x,y). Then using H(e,p)

as an information divergence measure and since e = p*I mini-
mizes H(e,p), the posterior approximation for q(x,y) is as
close as possible in an information-measure sense to the
prior density while at the same time satisfying the new in-
formation constraints I taken from the unknown cell density

alx,y).

Further Minimum Cross-Entropy Properties

The properties presented in this section highlight
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cross-.atropy's ability to measure how much a posterior den-
sity differs from the assumed prior density. Even though
cross-entropy does not have all the properties of a metric,
H(e,p) does have other properties that make it ideal for
use in a target detection algorithm. These properties are
presented in this section and then used in the next section

to develop the minimum cross-entropy detection rule.

Triangle Equality: Let I ©be the constraints given by

. /ffk(x.y)q(x,y)dxdy = m,
- )

k = 1.2--.t
and let p(x,y) be any prior probability density. Then

'_A H(q,p) = H(q,p*I) + H(p*I,p)

The minimum cross-entropy posterior estimate of q(x,y)

is both logically consistent (four consistency axioms) and

F4

& closer tc q(x,y) as measured by cross-entropy than the

g prior density p(x,y). Also, the difference H(q,p) - H(q,e)
) is exactly the cross-entropy H(e,p) between the posterior

and the prior. Therefore, H(e,p) can be interpreted as the
amount of information provided by the constraints I that is
not inherent in p(x,y). The posterior accessibility proper-

ty also shows that the difference H(q,p) - H(q,e) will
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equal 2ro when the correct expected value constraints are

provided.

Posterior Accessibility: For any density d(x,y) there
exists constraints I, such that d = p*%i for any prior
density p(x,y).

This property due to Csiszar (Csiszar, 1975) shows that
H(d,p) 1is in general the amount of information needed to
determine d(x,y) when given the prior p(x,y). The result
also shows that the cross-entropy H(d,p) measures the error
introduced by using p(x,y) instead of the true density
d(x,y). Used as an error measure, the posterior accessibility
property will allow the template to scene cross-entropy
H(q,t) to provide a "metric” for measuring the detection
rule's sensitivity to variations in the performance determin-
ing parameters presented in Chapter V. The next property
also shows that the minimum crcss-entropy template provides

the minimum error possible when the template is restricted

to an exponential form.

Expected Value Matching: Let I be the constraints

/ﬁ‘k(x,y)q(x,y)dxdy = m,

k=1,2...¢t

for a fixed set of information functions £, (x,y) and let
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e = p*¥. be the result of taking this information I into
account. Then for an arbitrary fixed density d(x,y) the
cross-entropy H(d,e) = H(4,p*I) has its minimum value when

the constraints satisfy

m, = m“l"’ = ffd(x.y)fk(x.y)dxdy

k= 1'2...t

This result is due to Johnson and Shore (Johnson, 1980)
and is a generalization of a property of orthogonal poly-
nomials that in the case of speech analysis is called the
"correlation matching property” (Markel, 1976). Using this
result insures that when a minimum cross-entropy density

e(x,y) of the general form

e(x,y) = p(x.y)exp[-xo- iA,f, (x.y)]
l-l

then H(d,e) is smallest when the expectations of e(x,y)
match those of the arbitrary density d(x,y). Therefore, in
general it follows that e = p*I 1is not only the density that
minimizes the prior to posterior cross-entropy H(e,p), but
it is also the density of the general form shown above that
minimizes the posterior to scene cross-entropy H(q,e) since
d(x,y) was an arbitrary density (Shore, 1980). Hence,

e(x,y) 1is not only closer to q(x,y) than is p(x,y), but
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it is “ne closest possible density of the expcnential form

given above for e(x,y).

2?5 The final property of cross-entropy minimization re-
quired to develop a target in clutter detection algorithm is
the posterior adaptation property presented by Johnson and
Shore (Johnson, 1980).

Posterior Adaptation: Let I, and I, stand respectively
for the information constraints
¢
. -/j/f,(x.y)qt(x.y)dxdy = m;
’\' cell
and
£, (x,y)q,(x,y)dxdy = of?
'xqug Xy xY-mi
cell
which involve the same set of information functions f‘(x.y)
where Jj = 1,2...t. Then
v (p* )*I = p*I
Li H. 2 2
s
- and
&
o L (2
- H(ep,p) = H(ey,e,) + Hle,,p) + ":{)‘iml - miﬂ
.1: 1
%i hold where e, = p*I, , e,= p*I, and f: are the Lagrange
1 multipliers associated with e, = p*I,.
35
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T'.e application of this property views gq,(x,y) and
q,(x,y) as the unknown system or scene probability densities
at two different points in time. Then gq,(x,y) is used as
a prior estimate or template for qz(x.y). The posterior
adaptation property shows that when I, is determined by
expectations of the same information functions that also
produced I,, the results of producing a posterior el(x,y)
using I, are completely wiped out by subsequently producing
a posterior ez(x.y) using I,. The posterior adaptation

property is shown graphically in Figure 3.1.

The Detection Algorithm

Using a constant set of information functions
Fl(x.y)|j = 0,1,2..uq (see Chapter IV) and a uniform prior
density p(x,y), the posterior adaptation property serves as
a starting point for the detection algorithm. The information
f? is obtained from a set of predefined template scenes
q™ (x,y) where k = 1,2...2Q. These template scenes model
the target of interest and various possible clutter c-nfig-
urations to provide the detection rule with Q target versus
clutter alternatives. With this information ff a set of
minimum cross-entropy (maximum entropy) template densities
t“)(x,y) where k = 1,2...2Q can be defined as t% = p*f?
corresponding to the e ,(x,y) density in the posterior adap-
tation result.

In a more general setting, when there are N targets of

interest the minimum cross-entropy template densities will
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Fig. 3.1. Posterior Adaptation

be denoted
M (x,y) where 1 = 0,1,2...N
and k = 1,2...Q

This notation refers to the N targets of interest as dis-

cussed in Chapter I where zero is reserved for the "only
clutter” template and there are Q possible clutter back-

grounds for each of the total N + 1 target classes. The

resulting (N + 1)Q template densities are obtained from a

minimum cross-entropy procedure as

ey

N R—
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where p(x,y) is the uniform prior density and IW)is the

expected value information obtained from the template scenes

as
/ﬁ] (x,y)d"‘) (x,y)dxdy = m(:')
cell '
where
= 1.2-o¢t
k = 1.2-.-Q
and
l=20,1...N

The production of the Q(N + 1) template scenes

d“)(x,y) is presented in Chapter VI, however, the basic prin-
ciple uses a master target template to represent each of the

N target classes. Each master target template is then super-
imposed on the Q different clutter backgrounds to offer

Q target and clutter configurations to the detection algo-
rithm for each target class. Appendix A shows eighteen three-
dimensional template scenes used to test the detection rule,
nine of which represent a tank in clutter and nine of which
represent only clutter. This set of template scenes where

N equals 1 and Q equals 9 provided the expected value

information used to produce the template densities shown in
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Append:x B. In the general setting and using the resulting
template densities é“)(x.y) every information cell analyzed
by the detection rule will be classified as only clutter or
as containing one of the N targets of interest. The clas-
sification is based on the ability of cross-entropy H(q,ém))
to measure how much the cell density gq(x,y) differs from
the template densities ﬁ“)(x.y).

To develop the actual classification rule several other
minimum cross-entropy properties must also be used. Using
the same set of information functisns [fi(x,y)lj = O.1,2..uq
used to construct the minimum cross-entropy template densities
tﬂ”(x,y), measurements of the information functions expected
values are taken from the scene density q (x,y) of the ith
cell and the pth frame of the aerial scene. These measure-
ments form a set of constraints I on the posterior density

and are obtained as

/ﬁ', (x,y)a(x,y)dxdy = m,

where
j : 1.2!Clt

to form a measurement vector M. Using this constraint infor-
mation coupled with the prior density p(x,y) will allow a

minimum cross-entropy posterior density to be produced as
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e = p*7. Figure 3.2 shows all the densities used in this
development of the detection algorithm and how these densi-
ties evolve as new expected value information is used ir. the
minimum cross-entropy procedure.

The cell information I can also be applied to the
(N + 1)Q minimum cross-entropy template densities t“”(x,y).
Abstractly, this procedure is forming a new set of (N + 1)Q
adapted template densities using the new expected value in-
formation I and the predefined template densities ﬂ“)(x.y)
as priors. Using the operator notation adapted densities are

constructed as

a™ = Mg
where

l = 0'1,2...N

k=1,2...Q

') Figure 3.2 provides a complete summary of the detection

' algorithm notation and minimum cross-entropy densities being
.
- generated. The scene density q(x,y) represents a general
{4 information cell that must be classified by the algorithm.
L Now the triangle equality can be applied to show that
:
L H(q,t™) = #(q,d™) + n(a™,t"™)
F
: 40
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where 1 =0,1,2...N and k = 1,2...Q. Also the adapte:

template densities were obtained as

a0 = 4R g

or

Using the posterior adaptation property results in the exp:-
sion

dﬂﬂ = p*I = e
where again 1 = 0,1,2...N and k = 1,2...Q. This result
shows that all (N + 1)Q adapted template densities shown

Figure 3.2 are equal to the single posterior density e(x,..

Returning to triangle equality with this result gives
H(g,t"™) = H(g,e) + H(e,t™)

with 1 = 0,1,2...N and k = 1,2...Q.

The cross-entropy H(q,t“m) is the amount of informa-
tion needed to determine the true information cell densit:-
a(x,y) given the predefined template density t™(x,y) o

it is a measure of how much q(x,y) differs from the temn:
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densit, . The triangle equality given above shows that the
total "distance” between q(x,y) and the template density
t“"(x,y) or H(q.t“”) is the sum of two components  The
expected value matching property has shown that the first
term H(q,e) already represents a minimum "distance” between
q(x,y) and the best posterior estimate of gq(x,y) with the
required exponential form. The second variable term

H(e,t“w) is the "distance" from the template density
t“”(x,y) to the minimum cross-entropy posterior density
e(x,y).

The strategy for a detection algorithm is now to use the
expected value matching property of the minimum cross-entropy
procedure. Also, since H(q,e) has previously been shown to
have its minimum possible value, the detection rule must se-
lect the template density t*)x,y) from the set of (N + 1)Q
total templates because it is the density that minimizes the
cross-entropy H(e,t®8)), The triangle equality for cross-
entropy therefore results in a detection rule based on the
"distance" between minimum cross-entropy template densities
t“”(x,y) and the minimum cross-entropy scene density e(x,y).

The rule requires that we find a8 such that
H(e, t®)  H(e,t™)

as 1 varies from 0 to N and k¥ varies from 1 to Q.

The detection rule that results is equivalent to the classi-
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g ficati n rule given by Kullback (Kullback, 1959:83). Using
this detection rule results in finding the template density
T t@m(x,y) that differs the l1-~ast from the true information

cell density q(x,y). The numerical value of a« will then

indicate if the ith information cell in the pth frame contains
only clutter or one of the N objects of interest.

Now to implement the detection rule numerically a modi-
fication of a result provided by Gray and Shore (Gray, 1980)
for a speech coding technique will be used. The second result

from the posterior adaptation property stated that

|
v t
H(e,,p) = H(e,,e,) + H(e,,p) + zgx“,’(m‘,” - n®)
i-
Rearranging and changing to the target density notation gives
t
H(e,t™) = H(e,p) - H(t™,p) - M - m)
=1
where Aﬂ” are the Lagrange multipliers used in the pre-
1 defined template density tﬁ”(x,y). The template densities
ﬁ; are also obtained through a minimum cross-entropy procedure
f and therefore
2 H(t‘"",p) - (lk) Z; A ak)
3

is the cross-entropy at the minimum. Then substitution of

this expression into the H(e,t™) expression gives
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H(e,t (rs)) = H(e, P) + ) (I’S) + Z lﬂm

The term H(e,p) 1is a constant for all template densities
and will not enter into the decision rule. The detection

rule can thus be implemented numerically as

Find o such that

#p} Z (OB) o t )\(rs)m

=t i=

as r varies from O to N and s varies from 1 to Q.

Defining (N + 1)Q Lagrange multiplier vectors [A,] by

1 Crs;|

s}
A

L

and an augmented measurement vector as

1
m,
[M] = m,

‘i . L]
- ™y
. 45
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allows the detection algorithm to be compactly expressed as

a dot product operation.

Find a8 such that

T

(o] = [n]]

when compared to all (N + 1)Q lambda vectors.

The detection algorithm presented here is numerically
attractive since all (N + 1)@ 1lambda vectors for the tem-
plate densities can be precomputed. The only on-line compu-
tations required then are the information function expected
value measurements and (N + 1)Q vector multiplications or

dot products.

L6




Chapter IV. Information Functions

A

Introduction

‘! The goal of the minimum cross-entropy detection algorithm
F is the identification of objects contained in information

cells independent of their position and orientation within

the cell. To meet this goal and complete the detection rule
definition, a set of orthonormal image moments will be devel-

; oped and referenced to a standard coordinate system to com-
f% pletely define the information functions f| (x,¥). The num-

ber and form of the information functions will then partly
determine the accuracy and resulting cross-entropy H(e.t““ )
distances between the approximate scene density e(x,y) and

the (N + 1)Q template densities t“u(x.y).

- Image Moments

. The concept of moments is used extensively in classical
mechanics and statistics. In this dissertation, the two-

¢ dimensional (r + s)th order raw moments of the normalized

information cell irradiance distribution q(x,y) are defined

in terms of Riemann integrals

u,, = /fx’ y*q(x,y)dxdy

] The irradiance distribution is a bounded function that can

47
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have 1. ::zero values only in a finite part of the xy plane.
Because of these irradiance distribution function character-
istics, moments of all orders exist and the double moment
sequence {u's} is uniquely determined by the density q(x,y)
and conversely q(x,y) is uniquely determined by {IH’}
(Hu, 1962).

The low-order moments can be used to define a standard
coordinate system about which the moment sequence will be
invariant. With the "target"” as the predominant feature in
the information cell where the term "target” also models a
clutter configuration with the target of interest, this stan-
dard coordinate system will be invariant to changes in inten-
sity, orientation and location of the "target.” The zero-

order moment is given by

Ugg = /fq(x.y)dxdy

and represents the total image power. The image power is
normalized to one as required of a probability density and
this also provides a standard density that is invariant to

uniform intensity variations. The first-order moments

U = fﬁq(x,y)dxdy

and

48
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Uy = /ﬁq(x.y)dxdy

cell

can be used to define centr:  moments {v“} which are in-
variant to translation of the "target” within the information
cell. These first-order moments locate the centroid of the
image irradiance distribution, i.e. % = Uo/ Yoo ¥ = Ugy Yoo

and the central moments are then defined about the centroid

as

Ve = f (x - 2 (y - " a(x,y)dxdy
cell
From the definition of central moments it is easy to express
the central moments in terms of the raw moments. For example,

the first three moment orders are related by

Zero Order: Yoo = Yoo
First Order: vm = U - XUy, = 0

Second Order: Voo = Ugo - X Ugo
Vg = Yy - XJugg
v, =u_- §3u
02 02 00
Lo
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A gene:al formula for calculating the central moments in
terms of the raw moments can be found using the binomial

n
expansion (a + b)' = E:cbd”'b'. The resulting general ex-

i=1
pression for converting raw moments into central moments is

Vg = i z':(f)(?.)( %) (-y)" M uye
j=0 k=0

where the notation (p) denotes the usual binomial coefficient
and equals a!/b!(a - b)!. Kanazawa also provides a FORTRAN
program (Center) to calculate two-dimensional central moments
from a set of two-dimensional raw moments using an alternate
iterative relationship (Kanazawa, 1980:106).

Using second order moments, a second image invariant,
the angle of minimum moment of inertia © can be used in
addition to the center of mass given by the centroids. The
quantities x,y and 6 together define an invariant reference
frame for any information cell. 1In terms of raw moments the
angle of minimum moment of inertia is defined by
2(u

0 = dtan? 00U11 = Yyg Yoy )

2 2
(UgoUze - Uig ) - (uggugy - g, )
and defines a region’'s orientation within a two-fold degen-
eracy. The use of central moments converts the image invari-
ants into the more intuitive concept of an invariant image

ellipse. The second-order central moments
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20 /ﬁx - i)zq(x,y)dxdy

Vig = J[/? - %) (y - ¥)al(x,y)dxdy

02 / (y - 9% alx,y)dxdy

cell

<
"

characterize the size and orientation of the image. Using
only central moments up through second order, the original
image can not be discriminated from a constant irradiance
ellipse having definite size, orientation and eccentricity
while centered at the image centroid (Teague, 1980). The
semi-major axis x' and the semi-minor axis y' of the el-
lipse are shown in Figure 4.1 and define the principal axes
of the pattern. Moments defined using the principal axes of
the pattern are invariant to rotation and translation. Using
central moments, the angle of minimum moment of inertia 6
reduces to the angle @ that defines a rotation from the
original x axis to the semi-major axis x' of the image

ellipse. The tilt angle g 1is defined by

g = stan

where -%/2 s tan''(x) s m/2. There is an ambiguity in the
tilt angle @ which can be resolved by selecting @ as the
angle between the x axis and the semi-major axis of the

ellipse or as defined in Figure 4.1, having the image para-
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meter a always greater than or equal to the parameter b.
The rotation to the invariant principal axes of the

pattern corresponds to the orthogonal transformation

xcos@ + ysing

»
f

~xsinfg + ycosf

<
n

Using this orthogonal transformation a general expression for
invariant moments can be defined in terms of a set of central

moments {Vn} as

w, = /ﬁkcosﬂ + ysin@)" (-xsing + ycos@) q(x,y)dxdy

Again using the binomial expansion results in the expression

Wy = /‘/j-zr‘:)(i')(xcosﬂ)hi(ysinﬂ)' i(.")( -xsingd)* *(ycosg)

k=0
cell

q(x,y)dxdy

which is equivalent to

[ 4

Wrs = j; §(_1)’.k(;)@)cosg)r.pk(Sinﬂ)hs.kvr-lﬂ-k.l*"

The general transformation expression shows that the set of

central moments {Vn} of order N = r + s transform into the
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set of invariant moments 6#4. of the same order N = r + s,

}c In summary then the raw moments u,, of order two and

r below have been used to construct an invariant reference

I frame called the principal axes of the pattern which is in-
i! variant to uniform intensity variations, translation and
rotation of the "target” within the information cell. Gen-
eral expressions were obtained for computing the invariant
;‘ moments of any order from a set of raw moments cof the same

‘ order. The raw image moments are first converted to central
L moments and the central moments are then mapped into invari-
i‘ " ant moments referenced to the principal axes of the pattern.
The translation and rotation of the set of raw moments will
be much faster numerically than translating and rotating the
i‘ complete image before computing the set of invariant moments.
Figure 4.2 illustrates the two equivalent methods of obtain-

3
SR ing the desired set of invariant moments.

F’ Orthonormal Moments
From functional analysis it is well-known that the gen-

eral definition of the moment operator

s Wik = M(X.y)x' y*dxdy
) cell
Fa
{ has the form of a projection of the normalized irradiance
b function q(x,y) onto the subspace of monomials {x'yq-.
t The Weierstrass approximation theorem shows that the monomials
q
form a complete basis set for a series expansion of q(x,y)
54
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but ths monomials do not form an orthogonal basis set. Using
the Gram-Schmidt process on the linearly independent set
{i,x.xz...} produces a well-known orthonormal set {On(xﬂ}
over the interval -1 s x s 1 +that is useful in constructing
a two-dimensional orthonormal set based on the monomials
(Kreyszig, 1978:176). The orthonormal elements have the gen-

eral form

0,(x) = /2n + 1 P, (x)
2

where P,(x) is the Legendre polynomial of order n. Using
the orthonormal elements O (3) to produce information func-
tions as linear combinations of the monomials allows q(x,y)
to simultaneously have both of the following orthogonal

series expansions:

Qo 00
a(x,¥) = 20 D BunOm(x)0, (¥)

m=0 n=Q

and

w\
a(x,y) = eXP[Z Zk...,,om(x)o,.(y)]

m=0 n=0

This model of the image density function is an extension of
the model developed by Neyman (Neyman, 1937) and used in
several articles by Crain (Crain, 1977, 1974, 1976) dealing

with approximating univariate probability densities. The
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Neyman nodel for the unknown information cell density func-
tion q(x,y) corresponds to the minimum cross-entropy (maxi-

mum entropy) density

al(x,y) = exp[—iki f; (x.y)]
i=0

with an infinite number of information functions f,(x,y)
formed as a product of normalized Legendre polynomials. The
Neyman infinite series expansion expreséed as a product of
normalized Legendre polynomials is basically a summation by
infinite rows of a matrix of series terms and must be approxi-
mated to be of any practical value. The approximation is
obtained by summing along finite diagonals and truncating at

a finite order N

max 0 obtain the expressions:

Nnax ‘
q(x’y) E’Z Zﬂi-n,nol-n(X)O" (y)

i=0 n=0

and

i=0 n=0
This result is used by Teague (Teague, 1980) and is the basic
equation required to approximate the unknown information cell
density q(x,y). The approximation for the information cell
density also corresponds to a minimum cross-entropy (maximum

entropy) density with (N, + 1)(N,, + 2)/2 information
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functicns fj(x,y) formed as products of the normalized
Legendre polynomials. Due to the rotational properties of
moments, all moments of a given order must be included in the
series expansion and treated as having equal importance when
constructing an approximate density function. The number of
information functions required in an approximate density func-
tion of order N_, is shown in Figure 4.3 with each diago-
nal line in the figure corresponding to a different moment
order beginning with one function and zero order. The accu-
racy of the truncated approximation for q(x,y) improves as
Nmax 18 increased, however, the numerical difficulties of
solving a large system of nonlinear equations for [A] also
increases as the size of the corresponding lambda vector

grows with N_. . The selection of the moment order N,

is thus a compromise between accuracy as measured by cross-
entropy H(q,tﬁﬂ) and the numerical processing time required
to compute the set of lambda vectors Ugw] and the augmented
measurement vectors [M].

The problem is then to select N for the set of tem-

max
plate densities t™)Nx,y). The template density representa-
tion must be accurate enough to provide a small probability
of error for the detection algorithm and also not require an
excessive amount of processing time. Cross-entropy H(q,t“d)
serves as an information theoretic distance between the true
density q(x,y) and the model density t“d(x,y). Because

H(q,t") is nonnegative and H(q,t"™) = 0 if and only if
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a(x,y) = t“”(x,y) almost everywhere, cross-entropy between
the model and the true density can be used to select N,
the required model order. The cross-entropy distance is

given by

H(q, t(")) f/ q(x, y)ln[ r%(x ' Y) ]dxdy
Tt (x,y)

Substituting the Neyman and minimum cross-entropy density

forms gives the expression

H(q, t(rs)) - /fq(x y)ln exp ZBif (x,y) dxdy
cell "g;’anfn (x,y)

Rearranging and taking expected values results in

t -]
H(q,t*") = Z(CY, - B;)my —//q(x.y) E B,,fn(x.y)]dxdy

n=t+}
I=0 cell

which is known to approach zero as t approaches infinity.
With the infinite sum in the last expression converging to
some function 3(x,y) the cross-entropy distance measure

will take the form
H(Q:'b(")) = i(al'pl)ml + C(t)
120

where C(t) 1is a constant for each value of t in the tem-
plate density expression. Since this expression for cross-

entropy can not be evaluated analytically, in Figure 6.1
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H(q,t“ﬂ) is numerically evaluated for a block tank template
and plotted as a function of +t, the number of information
functions used in the template. In general, for the minimum
cross-entropy detection algorithm to be effective the sum of
the expected values of the high order terms or the constant
C(t) must convey a small amount of information. The infor-
mation content of the high order terms in turn depends on
the number and magnitude of the variations in the density
that is being approximated by the template. Because of this
target dependence, H(q,t") is evaluated numerically in
e Chapter VI using a template with many abrupt and relatively
- large changes in the density function to provide an approxi-
mate worst case relationship between the number of informa-

tion functions and the resulting cross-entropy H(q,t™).

Legendre Polynomials

To complete the information function definition, we need
explicit expressions for the Legendre polynomials that are
used to form f,(x,y). These orthogonal polynomials are de-
fined over the interval [-1,1] and have the general explic-

it expression

/2]
Pn(x) = %'r / (_l)m(g) ((2n ﬁ Zm)))én-zm)

¢ m=0

t B ' where [n/2] denotes the greatest integer not exceeding n/2.
:. Legendre polynomials also satisfy the following recurrence

E relation (Courant, 1953:86):

4
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P, (x) = (Z_Q;_l)xp,,_t(x) - (-“1 - 1)P“_z(x>
n n

Table I explicitly defines the first thirteen Legendre poly-
nomials and the required normalization factor (2n +1)/2.
The Legendre polynomials shown can be used to define the

91 information functions required by Figure 4.3 for a twelth

order approximation of the true density function. Figure 4.~

also shows how all 91 information functions are constructed
from the normalized Legendre polynomials. For example, the
Lith information function shown as number 43 on the figure

is given by
fe3 (x4y) = 0,(x)-0, (y)
and using the expressions given in Table i becomes
£4(x,y) = (1.22x)(2.74)(26.81y" - 43.31x%+ 19.69y- 2.19y)
or
qu(x.y) = 89.31xy’ - 144.66xy>+ 65.76xy3- 7.31xy

The expected value of this information function can be

written in terms of invariant moments as

M= 89.31w, - 14L.66w, + 65.76w, - 7.31w,
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Table -. Legendre Polynomials
Symbol 2n+1 Explicit Expression
V"2

P, (x) 0.707 1

P, (x) 1.22 X

P, (x) 1.58 1.5x2-0.5

Ps(x) 1.87 2.5x°-1.5x

P, (x) 2.12 4.38x" -3.75x%+0.38

P (x) |2.35 7.88x> -8.75x%+1.88x

P, (x) 2.55 14,4458 -19,69x* +6.56x2-0.31

P, (x) |2.74 26.81x" -43.31x5+19.69x%-2.19x

B (x) [2.92 50.27x%-93.85x6+54.15x% -9.85x2+0.27

9 7

P, (x) |[3.08 94.96x° -201.09x +140.75xs-36.091c;.ujx
180.42x°-427.315® +351.90:° -117.31x"

By (x) 3.24 73x:i5 9;{ 7.31x

3.53x“-0.24
3hb 42x-902,05x +854. 57x” -351.88%°
+ 658 64x -Zi 69x

660. 2 5x02-189L . 68:8°+2030. 05%

Py,(x) 3.54 -997.24x%+219.98x* -17. 57x%+0.22
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The me .surement vector [M] required in the detection al-
gorithm is then completely defined by the set of invariant
moments {wmn}

In summary, a set of raw moments {umn} is produced and
converted into central moments {an} about the pattern cen-
troid. The central moments are then rotated and become the
set of invariant moments {wmn} about the principal axes of

the pattern. The set of orthonormal moments {m,} that form

the measurement vector [M] are then computed as linear com-
. ' binations of these invariant moments. Given these defini-
*;9 Ve tions, the detection algorithm is ready to process informa-

i | tion cells.
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Chapter V. Numerical Techniques and Performance Analysis

The key to implementing the minimum cross-entropy de-
tection algorithm is the ability to find the correct Lagrange
multiplier vector for a given set of measurements. The prob-

T
lem mathematically is to find A= (Ay,A;. . .A,) such that

-

Fo(A; »rf/;(x.y)dxdy -1 ) -Oq.

F, (A) j{/}l(x.y)e(x.y)dxdy - m, 0

L.F, (A) Jﬁ.(x,y)e(x.y)dxdy - m,J 0]

where e(x,y) = p(x,y)exp{—ko -A L, (x,y) - ...-A,ft(x.y)}

is the minimum cross-entropy density with a uniform prior
density. The (t + 1) constraints are nonlinear and except
for a few restricted cases cannot be solved directly for the
lambda vector. Several authors discuss iterative numerical
schemes for simultaneous solution of a system of nonlinear
eguations. Johnson (Johnson, 1979b:24) provides a computer
program written in APL for solving discrete cross-entropy
minimization problems with arbitrary positive priors that is

based on the Newton-Raphson method. Gokhale and Kullback
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(Gokhz_2, 1978) describe a somewhat different algorithm also
based on the Newton-Raphson method that has been implemented
in PL/1. Agmon, Alhassid and Levine (Agmon, 1979:250) des-
cribe yet another discrete cross-entropy minimization algori-
thm using a uniform prior and a FORTRAN implementation.
Miller also provides an alternate FORTRAN implementation in
one-dimension that is based on the Newton-Raphson method
(Miller, 1980:45).

The Newton method is an iterative scheme based on the

relationship:

oA = [ - [0 <[] [ra®)

where Lé"q is the Lagrange multiplier vector lambda for
the nth iteration and [J] is the Jacobian matrix for
[F(a®))] .
equation solved for [Aﬁ)]. The procedure repeats for Lézﬂ
[A( )] cee [A(")] ' [A("q)] until the difference [AA] 1is less

The initial estimate [AG»] is selected and the

than a predefined value which insures convergence has occured.
The equation that must be solved numerically to implement the
Newton method requires an evaluation of the Jacobian matrix
(7] during every iteration for a new lambda vector. The
Jacobian matrix has terms of the form 3F;(A)/3r; and (7]

is then a (t + 1) x (t + 1) symmetric matrix. Convergence
and rate of convergence of the Newton algorithm are dependent

on the initial estimate Léoﬂ . Many authors address the
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theore .ical convergence criteria of the Newton methcd (see
(Ortega, 1970) and (Saaty, 1964)) which in general define a
neighbtorhood about the solu. ’n vector where convergence is
assured if the initial estimate falls in this neighborhood.
The Newton method has thus been used almost exclusively
in solution schemes appearing in the technical literature.
Past applications, however, worked with a small number of
constraints and have encountered problems with ill-condition-
ing in the computer generated Jacobian matrix and selection
of an appropriate initial estimate of the lambda vector
(Miller, 1980:50). Using 91 constraints accentuates these
numerical problems to the point that the second-order Newton
method (Dodes, 1978) must be abandoned for lower order meth-

ods that do not use derivative information.

Lambda Vector Solution

The processing required to find the lambda vector is the
main burden of the minimum cross-entropy detection algorithm.
The lambda vector for each template density is, however, pre-
computed and stored for use in the detection algorithm. A
zero order method was selected to solve for the lambda vector
since the procedure must only be accomplished once for each
template density and most numerical problems are avoided.

The Cyclic Coordinate Method (Bazaraa, 1979:271) is a multi-
dimensional search procedure that does not use derivatives.
The only required information is that A € L where L has
the form L ={A.= a;s A s bd. The search procedure requires

67
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only & lefined search interval and has been implemented on
the Data General Eclipse S/250 Integral Array Processor.
When performed on the array processor, the cyclic coordinate
search method produces results faster than a comparably di-
mensioned Newton algorithm written in FORTRAN. The search

problem is then given the vector of constraint relationships

t
F, (M) = /ﬁ‘i(x.y)p(x,y)exp[- Zkufu(x,y)] dxdy - m; =0
u=0

cell

(1

1...t)

find the lambda vector required to define e(x,y). The dis-
crete approximation of this equation can then be written in

the form

n t )
Z Z () - m'}p(xl ,ym)expl:—}_‘_,)\“fu(xl ,ym)] =0

=1 m=1 u=0

(1

1
[W

.. t)

Using a uniform prior density and then canceling terms re-

sults in the equivalent expression:

I=1 m=1

zn:zn:{f,(x,.ym) - m,}exp[- z‘:k‘,[t'.,(x,,ym) - mu]:, =0

(1 =1...%t)
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The *+ = 91 equations defining the Lagrange parameter vector
A are implicit and nonlinear. The direct numerical solu-
tion of this vector constraint equation would be computa-
tionaly cumbersome. However, using a result derived by

Agmon et al (Agmon, 1979), this problem can be recast as a
simpler variational problem. The technique requires that a
"potential"” function which is concave for any trial set of
Lagrange parameters be defined. The values of the Lagrange
multiplier parameters can then be determined as the set which
minimizes the potential. Agmon et al provide the following
lemma which has direct application to the nonlinear constraint

equation given above:

Let QcR' be a simply connected domain. Let F:Q-R'
be a continuously differentiable vector function. Denote its

Jacobian by J, that is J,;, = 3F, /dAj and suppose it is a

i
symmetric positive definite matrix. The problem of solving
the set of nonlinear equations F(A) = 0 1is equivalent to

finding a minimum of a concave scalar potential function é;f.

The solution of the system of nonlinear equations
F(A) = 0 1is then found to be equivalent to minimizing the

following scalar potential function

QO;U\) = 1n iiexp - Z': Ax(fu(xn ' Ym) - mk)
=1 m=1 :

k=1
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The sc¢”ution program Lambda assumes L = {A: —ZSSAﬁSZS}

and has always converged to a minimum for'é;RAJ. Since the
potential function is concave, should a component of the solu-
tion vector lie outside this interval the algorithm will se-
lect a value of t25 and signal that the search interval
should be expanded. The functional minimization program uses
a 32 x 32 grid to compute é;RA) and a sequence of decreas-
ing search intervals to reach the solution vector.

The final component of the solution vector A, is found

0
from the requirement that the resulting minimum cross-entropy

density e(x,y) integrate to one. The result then

Ao = 1n -/:/;xp (—- i}\kfk(x,y))dxdy
k=1

cell

‘To implement the functional minimization scheme and produce

image moments requires an effective quadrature scheme. The
quadrature algorithm used in all programs will be developed

in the next section.

Numerical Quadrature

The first Newton-Cotes formula known as the Trapezoidal
Rule gives a relationship which forms the basis of an effec-
tive quadrature scheme. In one dimension with the interval
of integration divided in n parts the Trapezoidal Rule

states that (Young, 1972:371):

/f(x)dx = h [%(fo+ £,) + D fk] - .fllh.z.a_ £7(§),4e(a,b)




P PP PPy

where I, = f(a + xh) and h = (b - a)/n. The first process-

ing requirement for this quadrature scheme is the production
of a set of raw moments {umﬁ from the unknown image den-
sity function q(x,y) or template density t(x,y). Raw mo-
ments are then transformed into orthonormal Legendre moments
[M] for use in the detection algorithm or the iterative cy-
clic coordinate method.

The two-dimensional raw moment u is defined in Car-

Pq
tesian coordinates as

C c

Upq =fx"[fyqq(x,y)dy]dx

-¢ ~ ¢

which can be rewritten as

where

dq(x) =/y"q(x.y)dy

~-C

The one dimensional Newton-Cotes formula will be used to
approximate dg(x). Using only the first term of the Trape-

zoidal Rule gives

n-1
de(x;) = h[%(ygq(x-,.yo) + y‘:q(x;.y,.)) * Zly‘,'q(xuy,)]
J=

71




The agp.roximation can now be applied again to produce the

raw moments Upq - The raw moments are then:

' n-1
Upq = h[%(x:dq(xo) + xhdg(x,) + ;x:d(xk)zl
Completely expanding this approximation gives a clearer pic-
ture of the factors involved in wup, . The expanded approxi-

mation for the raw mements Upq is:

2
Upg = .hr[x:y:Q(xo.yo) + x:y,?Q(xoyy,,) + x,‘,’ygq(xn,yo) + X:Y:q(xn-yn)]

2 n-1 n-1 n-1
+ %_[X;ZY?Q(Xoy,- ) + x:Zy:q(xn,yk) + y:zx:’q(x. )
i k=1 =1

+ 3Rty )| ¢ 1SS R, y,)
m=1 k=1 j=1

The first grouping of terms in the expression represents the
contribution from the four corner points of the sampled un-
known (or template) density array a(x;,y; ) (or t(x,.y]) ).
The second grouping of terms represents the contribution from
the remaining "edge"” sample points. The last term then re-
presents all the interior sample points and when using a
256 x 256 sampled density array represents 98.44% of the pos-
sible contribution to the moments. When a white border is
used with the density matrix the "edge” terms will make no
contribution at all to the moment approximaticn and can be

ignored. With these insights the raw moment approximation

72




Radbancme £ 2 4 i.
'

2

AN SRS SN S Ge G S 4 b i
&~

used 1..

Upq

this dissertation will be

2 n n
k=0 i 0

For computer computation using this approximation all

moments through order L
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(L+15x(L+1)

a(xgry4)
a(xy,yq)
a(x,,¥y,)

q(xn.yl)

can be computed with two matrix

The matrix equation for the raw moment

. alxgey)]
. Q(xlpyn)

. Q(xzvyn)

q(xn.yn{
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With the Cartesian coordinate system origin centered in the
bordered image density function and the image normalized to
-1 < x,y s +1 the subroutine moment in Figure 5.1 computes

the normalized raw moment array.

Detection Algorithm Infrastructure

The basic software modules required in the minimum cross-
entropy detection algorithm are shown in Figure 5.1. The dia-
gram shows both on-line (solid line) and pre-processing (bro-
ken line) software modules with the interdependence between
the two types of processing. When using the detection algo-
rithm to process information cells, the (N + 1)Q lambda
vectors (Ag*’ ,AQ” o A?” ) will be stored as constants
for use in the detection program.

The pre-processing starts with a set of (N + 1)(Q) tem-

* plate densities used to "train” the detection algorithm.

These template densities represent pure clutter and N tar-
gets of current interest all superimposed on the Q clutter

backgrounds. The analog to digital program (A - D) produces
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(N + 1Y2 arrays of sample values each of dimension 256 x 256.

The sample values within the arrays have also been quantized
to 16 levels. Each array then contains 65,536 integer values
in the range 0-15. The program moment produces a set of 91
raw moments {u,} for each template array. The programs
center, rotate and Legendre map the moments for each template
into Legendre moments about the principal axis. The final
preprocessing program lambda iteratively solves for 91 A's
required to define the minimum cross-entropy density for each
template and also used in the detection algorithm.

The on-line processing for each unknown information cell
simply produces a set of 91 Legendre moments [M] using the
programs outlined in the preprocessing section. With the
Legendre moment vector and the (N + 1)Q lambda vectors the
detection program produces (N + 1)Q dot products. The
matrix of dot product values is searched for the smallest
element and the row number of that element determines the

classification decision for that information cell. The on-

line processing is then repeated for each new information cell.

The lambda values, however, remain fixed for all information
cells presented to the detection algorithm and thus prepro-
cessing is performed only once for a given set of template

densities.

Performance Analysis

Given the theory and now the software for a minimum

cross-entropy detection algorithm, an expected performance
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analys.s will complete the presentation of this detection
rule. The next chapter will then explore actual performance
on a set of test scenes and verify the impact of the salient
factors influencing probability of error. The analysis in
this section will attempt to use concepts from statistical
communication theory to identify the major factors determin-
ing P(e) 4in the minimum cross-entropy algorithm. Statis-
tical communication theory has as its goal the detection or
estimation of signals in the presence of noise, but because
of the difficulty of establishing useful statistical assump-
tions (Duda, 1973:324) it has found few applications in scene
analysis.

With statistical communication theory techniques in mind,
the information cell density can be simply modeled as the sum

of two terms:

alx,y) = s(x,y) + n(x,y)

The term s(x,y) represents the expected signal or the tem-
plate density used to train the detection algorithm, i.e. the
densities that correspond to the stored lambda vectors. The
other component n(x,y) represents the clutter that was not
expected nor modeled by the template densities and acts like
a noise term to the detection rule. Looking at the binary
decision case for simplicity, each of the two training den-

sities has a set of moments and a corresponding precomputed
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lambda vector. Then associated with the target template are
(M;] and EAT] while the clutter template has associated
vectors [M.] and[a/].

Using the minimum cross-entropy decision rule will first
require computing a set of moments over the information cell

or

j(/a(xpy)f,(x,y)dxdy =m,

cell

(i = 0...%)

Substituting in the additive noise model gives the expression

'/:/:o.(x,y)fi (x,y)dxdy + -/:/1.'1(x,y)fi (x,y)dxdy = m,

cell cell

(i = 0...1%)

Written as a vector this expression becomes

(M) + [m,] = (M]

The first moment vector [Ms] represents one of the two ex-
pected signals, i.e. target or clutter. The second term

[M"] is a noise perturbation vector caused by the unexpected
clutter in the scene. The minimum cross-entropy detection

algorithm templates are produced using a uniform prior den-
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sity 24 thus have maximum entropy consistent with the moment
constraints. Entropy has been related to scene structure
(Watanabe, 1981) where structure refers to the confinement
of scene energy to a small number of p.xels and large tran-
sitions in pixel energy. The smaller the scene entropy the
larger the scene structuredness. The minimum cross-entropy
templates thus have as little structure as possible and still
conform to the moment constraints. The normalized scene en-
ergy is smoothly spread over as many pixels as allowed by the
moment constraints to produce the template densities. The
minimum cross-entropy decision rule is thus inherently robust
(Rey, 1978) to small moment perturbations which correspond to
changes in the assumed underlying density. The changes in
the underlying distribution have minimal impact on the detec-
tion algorithm since small perturbations are smoothed away in
the process of constructing the maximum entropy templates.
The minimum cross-entropy decision rule then takes the
perturbed information cell moment vector and performs a dot
product operation with each of the stored template lambda

vectors to produce

[aJD) ,'%:u,]’[MJ

where H, corresponds to selecting the target hypothesis and
H, corresponds to selecting the clutter hypothesis. Expand-

ing the moment vector into its components gives
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Given that the signal term corresponds to a target, the first
term above will be a relatively large constant (K) while
the third term will be a small constant (k). The results
occur since both terms represent a cross-entropy that has
been shown to be positive in all cases and very small for
corresponding moment and lambda vectors. Therefore, the de-

cision rule becomes
:'r T T
(K - k) 5 (Al M) - (A )Dw]

The terms on the right can be viewed as a particular realiza-
tion of clutter from a large ensemble of possible clutter
configurations and are each thus realizations of random

variables. Then the decision rule can be written as

&

i

H
D = (K - k) $ r -r =r

(2]

Since the random variable r is formed as the difference of
similar random variables, r should have approximately zero
mean and some variance o2. Type II errors are then made
when r exceeds D and hypothesis He is declared to be
true. Using Tchebycheff's Inequality gives an immediate prob-

ability of error expression for equally likely hypothesis as

P(e) = P(|r|>D) = .g;
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Becaus the random variables r. and r. are formed as a

T Cc

sum of approximately independent random variables as

(1),_(N) () _(N) (t) _(N)
and
_ 4 _IN) c ™ © ™

the central-limit theorem (Papoulis, 1965:266) applies and
r will approach a Gaussian density as t becomes large.
The probability of error can then be expressed as

P(e) = 3 - erf(2)

where

2w

x -.,25
erf(x) = 1 e 4du
/

Now given the ratio D/ a much better estimate of P(€) can
be achieved with this approximation than the upper bound pro-
vided by Tchebycheff's Inequality. Figure 5.2 shows how
P(e) varies with Dj .

Both approaches to P(€) have shown a dependence on the
ratio ¢D 1in predicting the minimum cross-entropy detection

algorithm expected performance. The requirements for high
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perfor ance are to keep the clutter standard deviation sigma

as small as possible and generate a large correlation dif-
ference D. The factors which combine to determine detection
performance are now seen to be the number of moments used to
characterize the target, the relative target to scene area
and the amount of clutter modeled with the target in the tem-
plate density. Increasing the number of information func-
tions and thus the number of moments used *to characterize the
target will increase D since the k term will approach
zero as more functions are used in the minimum cross-entropy
template. The variance sigma squared can be decreased by re-
ducing the scene/target ratio. The increased relative target
size will then allow smaller variation in the clutter field
since more of the scene will be represented by the s(x,y)
term of the additive model. The variance can also be de-
creased by having more training densities with probable clut-
ter configurations built into the target model. Again the
signal term will account for more of the clutter and reduce
the possible variance associated with the noise term n(x,y)
in the additive mndel.

The clutter variance, however, can not be measured since
the ensemble of clutter fields is not known and therefore,
this is not a practical method of projecting the detection

algorithm performance. Cross-entropy H(q,t) defined as

H(q,t) = f/q(x y)ln[q(i Y)}dxd,

cell
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provid.s an alternate method of predicting the detection rule
performance. The cross-entropy H(aq,t) = H(q,p) - H(t,p)
serves as a measure of the distance between the scene density
q(x,y) and the template density t(x,y). Minimizing H(q,t)
has the effect of minimizing the number of pixel differences
between the training template and the scene density and there-
fore 1limits the magnitude of the clutter variance sigma
squared. Minimizing the template to scene cross-entropy
H(q,t) is thus equivalent to minimizing the clutter variance.
The use of H(q,t) to minimize the number of pixel differ-
ences is analogous to the procedure employeed by Watanabe
(Watanabe, 1965) in showing that the Karhunen-Loeve expansion
of the scene density minimizes the entropy of the squared
transform coefficients over the ensemble of possible orthogo-
nal coordinate systems. The analogous result is that the
Karhunen-Loevé coordinate system minimizes the number of terms
required to represent the image density.

The next chapter uses H(q,t) to tie together the ef-
fects of increasing the number of information functions, vary-
ing the scene/target ratio and increasing the number of tar-
get templates. In this work the triangle equality H(q,t)
= H(q,p) - H(t,p) is used to indirectly evaluate this tem-
plate to scene metric. To use the triangle equality it has
been assumed that the scene density is well represented with
a finite number of information functions. The final step in

evaluating the detection algorithm then relates the cross-
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re-—— - e g v @ et G Y PN .- j




R AT e BN MR e et e it i B LA CI AT R B e ARSI S T "‘1"‘?‘1’-.‘-.‘1

entrop, metric H(q,t) to the expected probability of error.

yorr— .-
: AP 6 | SRS
: . L0 e Ny -. .

r

— YTV 0 v
ll.'-..vrn' A

oy

85

Y

v
M |
PR

P . T e e e e e a o . L . -
L . % PP N U D Iy U SR NP P W LA SR 1 LY




(e

R

PP

L ASI SO A e e L Ol o e e 4 - ST rT—ry——"r —— PaA e Tha “Ban Ses e See e e 5wty -r"'—"-v'-f

Chapter VI. Processing Results

The performance factors identified in the last chapter
that collectively determine the target detecting ability of
the minimum cross-entropy detection algorithm will be ex-
plored in this chapter. The basis of this work is the tem-

plate to scene distance H(gq,t) and the triangle equality

H(q,t) = H(q,p) - H(t,p)

The performance factors will all be related to the cross-
entropy H(q,t) and then using a set of test pictures the
relationship betweén cross-entropy and probability of error
is estimated. The results presented here then tie together
the factors determining the error probability and allow a
user to select an operating point and then project a probable
performance or conversely select a required error probability

and know the constraints imposed on the detection algorithm.

Performance Factors

The number of information functions used in the minimum
cross-entropy templates determines H(t,p) and by using the
triangle equality also H(q,t). Any scene can be represented
exactly with a density of the form exp(- ék.fk(x,y)) where
{f.(x.y» defines a complete orthogonal set of functions in
R'. Thus as information functions are added to the template
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densit;: the prior to template cross-entropy H(t,p) will
increase resulting in the template to scene distance H(q,t)
decreasing and eventually approaching zero. This behavior
has been verified using the block tank shown in Figure 6.4
and the basic definition of cross-entropy. The block tank
has a relatively high cross-entropy value of H(q,p) = 1.965
due to its structure or confinement of scene energy and
abrupt changes in density. Also the block tank density has
no camera noise superimposed on the scene that blurs the
picture and reduces template entropy. The minimum cross-
entropy approximation to the block tank was computed using
second through twelfth order moment information and the re-
sulting template cross-entropy H(t,p) computed. Figure 6.1
shows the template to scene distance as a function of the
rumber of information functions used in the template. Note
that the resulting data points can be approximated with a
straight line.

The minimum cross-entropy template densities produced
for second through twelfth order moment information are given
in Pigures 6.5 through 6.15 respectively. The template den-
sities are shown to have increasing structure and cross-
entropy H(t,p) values as the number of moment constraints
is increased. The block tank was used to clearly show the
impact on the resulting template of the minimum cross-entropy

requirement and the conflicting requirement to conform to the

moment information.
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Ti.e scene cross-entropy H(q,p) measured using a uni-
form prior density has a finite maximum value over the unit
square. Using the clutter background that produces this
maximum value for scene cross-entropy allows a worst case
evaluation of the relationship between H(q,p) and the scene/
target ratio. The maximum value of scene cross-entropy was
experimentally found to be H(q,p) = 2.418 over the unit
square. With the maximum cross-entropy clutter uniformly
distributed over the unit square a tank was placed in the
center of this cluttered scene. The size of the tank was
then steadily decreased to produce Figure 6.2 which shows the
increase in scene cross-entropy as the relative target size
is decreased. The general shape will always hold true with
the initial cross-entropy value a function of the selected
target and H(q,p) asymptotically approaching the maximum
value for large scene/target ratios. Note that the operating
point used for the test set of images is shown on the graph.

Scene cross-entropy H(q,p) is one of two components of
H(q,t) as shown by the triangle quality. This first com-
ponent of the template to scene distance then defines a dis-
tance the minimum cross-entropy template density must strive
for to minimize the resulting template to scene distance
H(q,t). Two factors combine to determine the template cross-
entropy. The first factor is camera noise and it tends to
reduce H(t,p) and thus increase the resulting template to

scene distance. The second factor is the amount of informa-

89

...................




V14

oT3ey 3931el/ousdg snsiea Adoajumg-ssoa) eueoy ‘29 °

2

Td

4

00

! l¢' - -1 )
,4 —4- LL.. - 4.3~ 1+ 4 “.Q
. \ AERNERNEN NENGR NN JLY AL ggr LT NE AN 11Tl ...:U
IS DO BT JES [0 A 0N W 0 O T N Y Y Sy b - R S Ay . At o 4-4-4-- 4| 4- - 4 » -
1 | R L FRHA PR TR -L...w T .._.ﬁz,ﬁ T 1441 i 1]
44 1 L |- S Y10 N 0 U Y O ¢ O O -1 5 05 U 8 o8 S N . 4414 - .
L. §-4. oy Sy bt f—-f--4 bt 4 - 1.,4.:r| -~ 4—t 1 Uy O Wl U i o S - b - N lf,, Elg\\
g ) S 43 xL.ﬁ. RS N - LILQ‘..‘._L.I 1&1.? L.U R % BNy B W W O . W . 444 44
iL 11 SEERARuAnNnENNERR A nne IENEN) TEEN IR EEAnEENN Admak x.,.,T-, Rﬁ !
- : .
P4 M ENARN SRR RSN R ERE N N n N R R A T I ylm.n ﬁ bf | . e ﬂf- ]
-1 4. T I O B I | L JF T O O O O u; MA.ALI . T O I O ;‘ o L1 Y. ; LJ! ,
V1L i PETHE ELE fansERuREgNn T ) HHH e
y -4 1 -1 3. - 7..;1 l..ﬁl ;v. JA QNN VY U GO D S G B -4 44431144 -1 4 -4- x|ﬁL ‘
T VLT e T T IV TRV VY R T - .Twﬁu . .IT.HHX.} 11 L EREREN il L
ﬁlT‘w ﬁ - LlL.‘.:T. . x#rﬁ.l._l . ,.ﬁ.l S T O lf -1 1 A vvl.! 4-44-4-1-3 + 14 ;Tyl‘ - 0 R 0 G
) T T ﬁ T T I TS e e e B SR, Tt ERERE
4 i ettt b Ll; LT e i ey ] \ff\ TR ,L m-
= * 4 4 .A p | | v - QQN
T - m Tt ORI 1 L LR LI TIT3a ] TLETAT
i 4. . T.ﬁ 4.1 - - Lot - - o — -{- - r; - -4
~ L i P ped W _ * - ans I#TQ 1o ﬁf J 1] ﬁ RERNNEARENR NS
T e T T
e e A L B L
.F \‘ruﬁ L ; - B . 4 - )-f L Y- |k 4 - { -

-

.

e

90

B

©

—— - -

k.

PO SO

Tl



..............................
.........................................

tion used to produce the template or the number of informa-
tion functions. The template cross-entropy H(t,p) moves
toward H(q,p) as more information functions are added to
the minimum cross-entropy template. The two concepts of
relative target size and the number of information functions
used in the templates can be combined into one multilevel
plot as given in Figure 6.3. The straight line approximation
for H(t,p) has been used to simplify the presentation. The
first two performance factors, scene/target ratio and the
number of information functions in the template, have been
(ﬁ- tied together with the template to scene distance H(q,t).
' The next step is to estimate the relationship between H(q,t)

and the probability of error.

Approximate Error Probability

The first step in estimating P(€) for the minimum

cross-entropy detection algorithm is to evaluate performance

without the interfering clutter background. Half the test
scenes will contain a target and the other have only a uni-
form background. The target in the first half of the test
scenes was placed at various locations and orientations with-
in the information c¢ell to insure that each target scene is
L‘ unique. The initial detection rule test has thus reduced to
3 using moments as an object descriptor an area where they have
= been applied extensively. Starting with early work in char-
acter recognition (Hu, 1963), (Alt, 1962) invariant moments

L
& have proven useful in locating known objects on a uniform
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Pig. 6.13. Minimum Cross-Entropy Tank Reconstruction (66 Information Functions)




truction (78 Information Functions)

-Entropy Tank Recons

Fig. 6.14. Minimum Cross







background. Automatic interpretation of ship photographs
using spatial moments (Smith, 1971) has obtained performance

comparable to human photointc..preters, however, again on a

ST ’

uniform background.

S. B. Dudani extended the moment invariant concept to
the identification of three-dimensional objects in his mas-
ters thesis (Dudani, 1971) and in his doctoral dissertation

(Dudani, 1973) where he conducted an experimental study of

0~ SO - Ha0S
P et . s . « - ¢

aircraft identification using moment methods. Dudani orient-

ed his work toward video imagery and only used the informa-

tion contained in the second and third order moments calcu-
lated over the image silhouette and boundary to provide the
information for his target classification rule. Then he used
a test set of approximately 100 images and various classifiers
(Bayes, K-nearest neighbor and sequential) to show that the
classifiers performance was superior to that obtained with
human test subjects.

With this historical background of moments used as an
object descriptor it is not surprising that the minimum cross-
entropy detection algorithm performs well without an inter-
fering clutter background. In fact, the classifier correctly
recognized every scene in a test group of twenty pictures.
Half of these pictures contained tanks on a uniform background
and the other half only the uniform background. The minimum
cross-entropy rule was shown to function correctly as an ob-

Ject descriptor and has performed at least as well as earlier

105

R SR SO P P S N a



target detection rules on this limited set of test data.

Looking again at the history of moment methods, the next
logical step would be for someone to find objects in clut-
tered scenes using moments. Wong and Hall (Wong, 1978) (Hall,
1979) have tried this concept by using scene invariant moments
as a similarity measure in matching or registration of radar
and optical images. Most researchers have, however, attempted
to isolate a candidate pattern from its background by prepro-
cessing the picture before attempting target classification.
This approach to clutter occured as stated by Nill (Nill,
1981) since it was assumed that otherwise there would be 1lit-
tle chance of recognizing a pattern when the moments consist
of contributions from the pattern and background clutter com-
bined. The preprocessing, however, produces its own errors
and destroys information in the original scene. The minimum
cross-entropy detection rule provides an alternative to the
preprocessing requirement by accounting for clutter with the
templates and then being robust to clutter perturbations that
occur in the actual scene.

The exact relationship between error probability and
template to scene cross-entropy can not be established ana-
lytically and therefore must be estimated experimentally. A
set of test scenes and a set of templates are both required
for this experiment. The set of test scenes is represented
by Figure 6.16 which shows one of the fifty tank in clutter
Pictures and Figure 6.17 which shows one of the fifty clutter
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Fig. 6.16. Test Scene with Tank and Clutter
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pictur:s. The 100 test scenes were all unique and contained
a broad spectrum of possible clutter configurations. The
selected template densities are provided in Appendix A with
their cross~entropy values. The templates use circular disks
to represent the clutter and provide nine target-clutter al-
ternatives for the minimum cross-entropy detection rule. The
clutter model is a simplified version of one used in an Envi-
ronmental Research Institute of Michigan (ERIM) Report (Wil-
kins, 1977) to provide a means of scene modeling and of gen-
erating "typical” scenes. The ERIM modeling procedure uses
elliptical areas to represent a background scene and produce
a pseudo-image whose spatial characteristics approximate those
of the original image. This method of generating typical
scenes is attractive and as discussed by Teague (Teague, 1980)
when only moments up through second order are considered, all
objects are completely equivalent to a constant irradiance
ellipse having definite size, orientation, and eccentricity
and centered at the object centroid. Besides making intuitive
sense ERIM has experimentally found that the performance of

sensors against the actual background and against the simu-

lated background is essentially the same and thus the salient

spatial features of the background have been preserved with

3

:‘ the pseudo-image.

L The circular disk is a degenerate ellipse with no orien-
tation information and thus this clutter model is very simi-

& lar to the pseudo-images used by ERIM. The templates with

o 109
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clutte. disks in Appendix A do suffer from superimposed cam-
era noise which detracts from their effectiveness in the tar-

get detection algorithm. TL noise impact is shown in Appen-

'dix B where the minimum cross-entropy densities corresponding

to the templates of Appendix A are shown. The minimum cross-
entropy densities that are used in the detection rule have

low prior to template cross-entropy values because of the
camera noise. The smaller template H(t,p) values result

in larger average template to scene distances and larger prob-
ability of error figures. Despite the known impact of cam-
era noise no method could be found that would remove it with-
out distorting the template.

Using the 100 test scenes, each with cross-entropies
H,(q,p) and the 18 training templates each with minimum
cross-entropies Hk(t,p) a test run of the detection rule
was conducted. In the test procedure P(tank) = P(clutter)
= 4 and the algorithm selects a template from the training
set as the nearest match to each of the test scenes. Thus

for each of the 100 test pictures we have the relationship

H' (QJt) = H| (Qop) - Hk(‘t:P)

i=1...100
ke {1 ... 18

where k 1is the template selected by the detection rule.
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The larger the set of template densities the more likely one

of the predefined template clutter configurations will cor-~

)

respond closely with the actual test scene and result in the

correct classification of that scene. Figure 6.18 displays

v e
A TN
T A

the performance obtained over the test set of scenes as the
number of template alternatives is increased for two to eight-
een. The performance improvement stops in this test of the
detection algorithm but theoretically performance will con-
tinue to improve as more and more templates are available for
comparison with each test scene. The departure from theory

in this test can be attributed to the small size of the test
scene set. Looking at Figure 5.2 relating error probability
to the correlation difference/clutter standari deviation

ratio shows that there is an expected slowing in performance
improvement as templates are added to reduce the clutter
standard deviation. The test set error probability of 0.19
corresponds to a correlation/clutter ration of Dj = 0.94

in Figure 5.2 and a region of rapidly decreasing slope in the
graph. Thus it is expected to require a large change in the
number of templates and the resulting correlation/clutter
ratio to produce further substantial improvement in the error
probability for the detection rule. The improvement of P(e€)
with increasing numbers of templates can also be related to
the improvement in the average template to scene cross-entropy

of the test set defined as

H(q,t) = ) H,(q,t)/100
ist
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which vill decrease as better template scene matches result
from the larger set of template alternatives. The template
to0 scene cross-entropy H(q,t) thus has a well defined rela-
tionship to all three performance factors. The cross-entropy
H(q,t) can also be related to the error probability which

is normally used to characterize a recognition system's per-
formance. Kovalevsky (Kovalevsky, 1980:78) explores the re-
lationship between changes in entropy and probabiliiy of
error. He was not able to find an exact functional relation-
ship between probability of error and entropy but has estab-
lished a definite relationship between these two performance
indicators. The results show that for a given entropy change
the error probability can vary only between definite limits
and conversely for a given error probability P the entropy
lies between limits that are a function of P. Since using
uniform priors in the cross-entropy expressions result in an
equivalence between cross-entropy and entropy, Kovalevsky's

results apply to this work also since

H(q,t) = H(q,p) - H(%,p)

is exactly a change in entropy.

The bounds provided by Kovalevsky are interesting but
will not allow the selection of H(q,t) Dbased on a system
error probability requirement. The partitioning of the set

of test scene cross-entropy values into four equal size bins
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with each having a resulting P(€) and average cross-entropy
provides an approximation to the relationship between cross-
entropy and probability of error. Figure 6.19 provides a
broken line plot of the resulting error probability plotted
against the average bin cross-entropy values. The straight
line plot was obtained using the overall test set error prob-
ability as a pivot point and then providing a minimum differ-
ence compromise between the more error prone bin cross-entropy
values.

Figure 6.19 clearly shows that decreasing the template
to scene cross-entropy values will improve the expected error
probability of the detection algorithm. Adding template al-
ternatives and reducing the camera noise superimposed on the
templates will therefore result in improved performance. In-
creasing the number of information functions and decreasing
cell size will also result in smaller cross-entropy H(q,t)
values and thus improved performance. Figures 6.19, 6.18,
and 6.3 together allow a system error probability requirement
to define the required performance factor values. Conversely
the graphs tie together the performance factors determining
error probability and given an operating point provide a good
estimate of expected system performance.

The minimum cross-entropy detection rule has many attrac-
tive attributes. The rule has been shown to be optimal in a
well defined information theoretic sense. Also the algorithm

is computationally efficient in only computing moments and
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dot products on line. Finally as shown in this chapter the
detection rule is robust in maintaining performance with a

range of underlying clutter density configurations.
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Chapter VII. Summary and Future Research

Summary

Based on the desired properties of any inference proce-

dure stated as four consistency axioms, this dissertation has
used the concept of minimum cross-entropy to develop a target
in clutter detection algorithm. The algorithm uses minimum
cross-entropy templates that are constructed using all avail-
able moment information, but maintaining "maximum uncertainty"”
with respect to unspecified information. This construction
technique provides a "minimally prejudiced" template and re-
sults in a detection rule that is robust to clutter perturba-
tions in the actual scene. The development requires informa-
tion in the form of two-dimensional moments that are convert-
ed into expected values of an orthonormal set of information
functions constructed with Legendre polynomials. The work is
based on a constrained optimization problem and includes
three procedural steps: specification of the set of template
densities, solution of the constraint equations to completely
define the minimum cross-entropy template and the use of
cross-entropy to match actual scenes with the predefined tem-
plates.

The properties of cross-entropy minimization were re-
viewed showing the existance of a unique solution to the con-

strained optimization problem. Further, the solution density
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was shown to take the following form:
t(x,y) = p(x,y)exp {-Ao -Af (xy) - . -Akfk(x.y)}

where the f‘(x,y) are information functions, the A, are
the associated lLagrange multipliers, and p(x,y) is the as-
sumed prior density. A numerical scheme based on the Cyclic
Coordinate Method was presented to solve the constraint equa-
tions recast as a variational problem for a potential func-
tional. The potential functional is concave for any trial
set of Lagrange parameters and will thus always converge to
a global solution.

The general target classification algorithm is developed
based on the ability of cross-entropy to measure how much a
scene density differs from a predefined template density.
Using the triangle equality and the posterior adaptation pro-
perty of minimum cross-entropy densities results in a fast
on-line numerical implementation of the classification rule.
The on-line processing was reduced to a dot product uperation
between the scene moment vector and all stored template lamb-
da vectors followed by a search for the minimum dot product
value. Conceptually, the minimum cross-entropy classifier
looks for the template lambda vector most nearly orthogonal
to the scene moment vector in the decision space.

Detection rule performance was examined resulting in the

identification of relative target size, number of information
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functions used in the template and number of template alter-
natives as the major performance determining factors. All
three performance factors were related to a template to scene
distance H(q,t) to show how these factors are interrelated
in determining performance. Finally, a set of 100 test
scenes was processed using the decision rule to estimate the
relationship between the template to scene cross-entropy
H(q,t) and the probability of error. The entire target
detection procedure has been programmed and tested for com-

puter use.

Future Research

The research conducted in developing the minimum cross-
entropy detection algorithm surfaced several areas for con-
tinued investigation. These research areas are outlined in
the following paragraphs.

The area of template selection offers large dividends
in improved detection algorithm performance. A method of
producing templates without camera noise will result in an
immediate performance improvement. The major research area
is, however, an optimum method of clutter placement within the
template coupled with an analysis of the optimum number of
templates for a given number of information functions and
scene/target ratio. The performance impact of using ellipses
rather than circles in the clutter model should also be ad-
dressed.

Using integral transforms (Wolf, 1979), the detection
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problen can be moved to a transform domain which could im-

prove error probability performance by removing some of the
initial target orientation uncertainty. As examples, the
magnitude of the Fourier transform of an object or function
is invariant to a shift in the function and the Mellin trans-
form is invariant to scale change in the input function.
Casasent discusses these transforms and combinations such as
Fourier-Mellin transforms coupled with geometrical transfor-
mations (Casasent, 1979) that provide positional, rotational,
and scale invariance. In a transform domain that reduces
initial target orientation uncertainty, the research would
explore the optimum selection of information functions. The
information function set selected would depend on the target
of interest and could achieve improved probability of error
performance with a simplified template model and reduced pre-
processing workload.

The target detection algorithm coupled with preprocess-
ing algorithms such as edge detectors (Abdou, 1978) is anoth-
er area for further research. The information cell moments
would be calculated over an image silhouette and boundary
after the preprocessing operations. Using the preprocessing
approach would result in a method similar to Dudani's (Dudani,
1973) that uses the preprocessing to remove unimportant in-
formation from the image and increase the template cross-
entropy and thus improve error probability performance.

The research centered on characterizing two-dimensional
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densit; functions to develop the detection rule, yet the
theoretical development supports a three-dimensional charac-
terization. Using a stereo vision system or a scamming laser
rangefinder, a range image is obtained where gray level re-
presents not brightness, but the distance from the camera to
the reflecting surface in the scene (Castleman, 1979:349).
The combination of a brightness image and range image pro-
duces an approximate three-dimensional image density function
(x,y,2). The three-dimensional moments of order p + q + s

of the density (x,y,z) are then defined by

Mpas =ffﬁc"y°z' (x,y,z)dxdydz

cube

With the 2z axis perpendicular to the principal axis of the
pattern, we have an immediate invariant coordinate system for
the minimum cross-entropy density approximation. After de-
fining a set of three-dimensional information functions all
concepts carry forward from the two~dimensional case. In
three-dimensions the solution to the constrained optimization

problem takes the form

t
t(x,y,2) = p(X.y.z)exp{ -Ao” Z)\“f"(x.y.Z)}
k=1

where p(x,y,z) is the prior density. The template clutter
model extends the two-dimensional clutter ellipses to three-
dimensional clutter ellipsoids and the detection rule re-
mains unchanged. Research into a three-dimensional target

121




4
B

detection rule could provide a method of detecting objects

in oblique aerial scenes.
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Finally, this detection rule provides a means of detect-
ing objects in cluttered scenes and we have suggested exten-
sions that may improve the probability of error performance.

Potential applications in reconnaissance, industrial robots,

__—e . 0n o v
d A AAR
R LN

and imaging radar are examples that make extension of this

work a viable research area.
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Appendix A. Template Densities

T el T T g

The eighteen template scenes used in Chapter Six to eval-
uate the approximate probability of error are shown in this
appendix. Moments were taken from these template scenes to
define a set of nonlinear constraint equations for each den-
sity. The constraint equations were solved for the lambda
vector using the cyclic coordinate search method. The result-
ing lambda vector then completely defines a corresponding
minimum cross-entropy template that is provided in Appendix B.

These templates were produced from photographs and are
stored in the computer as 256 x 256 integer arrays. The
gray scale is confined to sixteen levels in the sampling pro-
cess which accounts for the abrupt changes in intensity seen
in the templates. Note the camera noise superimposed on
these templates and their resulting low cross-entropy values.

The odd number templates represent clutter scenes while
the even number templates represent a tank with various clut-
ter backgrounds. Each template pair (ex. 1 and 2) represents
a tank-clutter alternative for the detection rule. The clut-
ter seen in these templates comes from dark circular disks
distributed in the scene that represent various possible

clutter configurations.
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Fig. A.17. Template Density 17 with Cross
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Appendix B. Minimum Cross-Entropy Templates

The eighteen minimum cross-entropy densities that cor-
respond to the template scenes given in Appendix A are shown
in this appendix. Given the lambda vector resulting from
the solution of the constrainted optimization problem de-
fined by the template density moments, each of the minimum

cross-entropy templates is completely defined by
90
(k) (k)
tu(x,y) = exp[—ko-Z)\i f, (x,y)]
i=1
k= 1,..18 (B.1)

Note the very low cross-entropy values resulting from the

camera noise.
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Appendix C. Temvnlate Photographs

The eighteen original template photographs are provided
in this arpendix. The photographs are sampled to produce the
sixteen level gray scale perspective plots provided in Appen-

dix A.
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Template 10

Fig. C.5. Template Alternative Five
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Fig. C.8. Template Alternative Eight
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